The Insurance is the Lemon: Failing to Index Contracts

Barney Hartman-Glaser (UCLA) Benjamin Hébert (Stanford and NBER)
June 18, 2018
• Many (almost all) contracts are not indexed
 • Example: residential mortgages
 • Indices: Case-Shiller, local wages/unemployment/rents, etc...
• There are indices available
 • Not based on individual borrower’s outcomes
 • “external” not “internal”
• These indices could provide useful insurance
 • Borrower’s marginal utility related to index
 • The promises aren’t indexed
 • The payment is exposed to the index
• Why aren’t contracts indexed?
Our Story

- Borrowers are not sure about the index
 - In particular, how the index maps to the actual risk
- Borrowers know the lenders know more
 - “Behavioral” assumption?
 - Bounded rationality?
- Borrowers fear “lemon” insurance
 - Costly insurance that isn’t related to actual risks
- Lenders are risk-averse w.r.t. risks
 - “Lemon” insurance is the cheapest to provide
A Simple Example

- Borrower needs $1 to invest in a project that will yield $2.
- External state $a \in A$:
 - $a = \text{Good}, \ P(a = G) = \frac{1}{2}$
 - $a = \text{Bad}, \ P(a = B) = \frac{1}{2}$
 - a is not contractible, nor observed before payoffs realized
- Contractible Index $z \in Z$:
 - Also takes on values $\{G, B\}$
 - Two kinds of index:
 - high quality: perfectly correlated with a,
 - low quality: independent of a.
Contracts, Lenders, and Preferences

- Two possible contracts:
 - Contingent (on index) contract $s_C(G) = \frac{8}{3}, \ s_C(B) = 0$
 - Non-contingent contract $s_N(G) = s_N(B) = 1$

- Lenders:
 - $|L| \geq 3$ identical lenders simultaneously offer contracts
 - All lenders know if index is high or low quality
 - Borrower does not know, prior prob. μ_0 for low quality

- Preferences:

 Borrower: $\phi_B(s, a) = \left(\mathbb{1}\{a = G\} \frac{1}{2} + \mathbb{1}\{a = B\} \frac{3}{2} \right) \left(2 - s\right)$

 Lenders: $\phi_L(s, a) = -1 + \left(\mathbb{1}\{a = G\} \frac{3}{4} + \mathbb{1}\{a = B\} \frac{5}{4} \right) s$
Equilibria

- Concept: perfect Bayesian equilibrium.
- A “good” equilibrium with risk sharing:
 - All lenders offer contingent contract if index high quality, non-contingent if low
 - Off-path beliefs:
 - if $|L| - 1$ lenders offer non-contingent, believe low quality index
 - if $|L| - 1$ offer contingent, believe high quality index
- A “bad” equilibrium with no risk sharing:
 - All lenders offer non-contingent contract always
 - Off-path beliefs: if offered contingent contract, believe index is low quality
Why Multiple Equilibria?

- Both contracts break-even for lenders if index is high quality
- Contingent contract is profitable if index low quality
 - Lender risk-averse, demands risk-premium if index high quality
 - If index low-quality, this risk-premium is just profit
- Market for “contingency” is like “the market for lemons”
- But common type and competition can help:
 - \(|L| \geq 3\) lenders sufficient for “good” equilibrium to exist
- Main part of the paper generalize this idea
Players, States, Times

- **Time zero:**
 - $|L| \geq 3$ lenders have financial resources
 - A borrower wants to raise $K > 0$ to invest in a project
 - Lenders will post contracts
 - Borrower picks one

- **Time one:**
 - External state $a \in A$
 - Index $z \in Z$
 - Idiosyncratic state $i \in I$
 - A and Z are finite, totally ordered: \succ means “better”
 - Payoffs
Payoffs

- Contract $s \in S$; s_z is contract given index $z \in Z$
- Given contract $s \in S$, index $z \in Z$, and state $a \in A$:
 - Borrower’s indirect util. function $\phi_B(s_z, a)$
 - Lender’s indirect util. function $\phi_L(s_z, a)$
- What are these things?
 - Costly state verification (CSV)
 - Mortgage model in paper, utility functions
- CSV and mortgage models: debt optimal given $a \in A$
 - We require s_z be “ex-post efficient” (e.g. debt)
 - Call this set of contracts S_D
• Let \(\theta(a, z) \) be the joint distribution of \(a \in A \) and \(z \in Z \)
• Lenders know \(\theta \); it is drawn from convex set \(\Theta \)
• The borrowers have prior \(\mu_0(\theta) \)
• The marginals \(p(a) \) and \(q(z) \) are the same for all \(\theta \in \Theta \)
 • w.l.o.g. assume full support
• Will impose more assumptions on \(\Theta \) below
• “Behavioral” assumption
 • How index is related to house prices is not literally private
 • Borrowers just know less than lenders about this
• Lenders simultaneously offer contracts
• Menu of contracts offered is signal, borrower updates
• Borrower chooses (or doesn’t participate)
• Standard equilibrium definition
 • D1 refinement and one additional refinement
 • Refinements don’t eliminate multiple eq.
Assumptions

- The “optimal non-contingent contract” s^* is feasible
 - Does not depend on index z
- The “full-information optimal contract” $\bar{s}(\theta)$ exists
 - and is not equal to s^* for all θ
- Next: two key conditions for the main result
Rich Type Space

Definition 1

θ' lower-orthant dominates θ ($\theta' \succeq \theta$) if, for all $\bar{a} \in A$ and $\bar{z} \in Z$,

$$
\sum_{a \in A : a \preceq \bar{a}} \sum_{z \in Z : z \preceq \bar{z}} (\theta'(a, z) - \theta(a, z)) \geq 0.
$$

\succeq = super-modular ordering (Meyer and Strulovici [2012]).

Condition 1

The support of μ_0:

1. Includes in the uninformative type $\theta_0(a, z) = p(a)q(z)$.
2. Includes only positively interrelated types ($\theta \succeq \theta_0$).
3. Includes, for all θ s.t. $\mu(\theta) > 0$, all θ' s.t. $\theta \succeq \theta' \succeq \theta_0$.

Ordering

Condition 2

For all $d', d \in D$ with $d' > d$, $\phi_L(s_{d'}, a) - \phi_L(s_d, a)$ is weakly decreasing in a, and $U(s_{d'}, a; \lambda^*) - U(s_d, a; \lambda^*)$ increasing in a.

- $\phi_L(s_d, a)$ sub-modular and $U(s_d, a; \lambda^*)$ super-modular in (d, a)
- Marginal benefit to lender of promises monotone in a
 - Same ordering regardless of level of debt
- Marginal cost to borrower of promises monotone in a, same direction
 - Borrower and lender agree on which states are “good” and “bad”
- Borrower “more risk averse” than lender
 - Marginal social value of debt higher in good states
- Could switch “sub-” and “super-”
Proposition 1

The pure-strategy symmetric equilibrium $s(\theta) = \bar{s}(\theta)$ exists,

and

Proposition 2

Under conditions 2, and 1, there exists a symmetric pure-strategy equilibrium in which $s(\theta) = s^*$.

- Same intuition as in example
- “Catch-22” for lenders trying to break the equilibrium:
 - promises increasing in z are efficient, but profitable for θ_0 type
 - promises decreasing in z are inefficient
 - can’t profitably separate with monotone (in z) promises
 - non-monotone contracts have same problem b/c of rich type space
Extensions

- Monopoly lender:
 - non-contingent eq. exists under similar conditions
 - “best” eq does not exist

- Profitable lending:
 - Population of borrowers
 - Decreasing returns to scale
 - Changes how D1 operates
 - Non-contingent eq. exists under similar conditions

- Borrower uncertain about marginal distribution of z
 - Result still holds for sufficiently rich type space
Conclusion

- Why aren’t indexed contracts used?
- Because borrowers fear “lemon” insurance
- Multiple, ex-ante Pareto-ranked equilibria
- Security design example:
 - Indexed debt is best
 - non-indexed debt is an equilibrium
References