Moral Hazard and the Optimality of Debt

Benjamin Hébert

Stanford University

November 2015
Moral Hazard and Debt

Why is debt so prevalent?
- Doesn’t it cause excessive risk-taking?
- “Heads I win, tails you lose.”

Example: securitization.
- The “seller” makes loans, sells security to investors.
- In aggregate, outside investors (“buyers”) purchase a debt claim.
- The seller retains a “first-loss”, “horizontal,” or “levered equity” tranche.
- Common examples: mortgages, credit card debt, auto loans.
- Fun example: Bowie bonds (asset: song royalties).
Moral Hazard and Securitization

Why is moral hazard and securitization interesting?

- Bad incentives in securitization prior to financial crisis.
- Many corporate finance theories of debt don’t fit.
 - Taxes, control rights, free cash flow, costly state verification.
- Theory will apply to corporate finance and principal-agent problems.

What I argue: debt is optimal for moral hazard despite excess risk-taking.

Mini-outline:

1. Model setup.
2. Intuition for why debt is optimal.
3. Related literature.
Assets and Agents

- There are two key times, 0 and 1.
- The seller can create or modify an asset.
 - Example: mortgage originator (Countrywide, New Century, etc...).
- The seller is risk-neutral.
- The seller discounts time-1 cashflows to time-0 with factor β_s.
- The buyer is risk-neutral, discounts cashflows with factor $\beta_b > \beta_s$.
- Define the “gains from trade” as $\kappa = \frac{\beta_b - \beta_s}{\beta_s}$.
States

- Ω is the set of time-1 states of the model.
- Start with discrete models: $N+1$ possible states, $\Omega = \{0, 1, \ldots, N\}$.
- Asset value v_i depends on state $i \in \Omega$.
- Assume v_i is weakly increasing in i, $v_0 = 0$, $v_N > v_0$.
- Could have two states $i, j \in \Omega$ with same asset value, $v_i = v_j$.
Securities

- At time 0, the seller can sell a security to the buyer.
- The value of the security is s_i, can be contingent on the state.
 - Can contract on asset value v_i, also other information.
- Limited liability: seller can promise only the value of the asset.
- In this sense, the security is backed by the asset: $\forall i \in \Omega, \ s_i \leq v_i$.
- Limited liability for the buyer: $\forall i \in \Omega, \ s_i \geq 0$.
Securities

- At time 0, the seller can sell a security to the buyer.
- The value of the security is \(s_i \), can be contingent on the state.
 - Can contract on asset value \(v_i \), also other information.
- Limited liability: seller can promise only the value of the asset.
- In this sense, the security is backed by the asset: \(\forall i \in \Omega, \ s_i \leq v_i \).
- Limited liability for the buyer: \(\forall i \in \Omega, \ s_i \geq 0 \).

- Space of allowed securities includes:
 - Selling all of the asset.
 - Selling none of the asset.
 - Selling a fractional claim on the asset.
 - Debt: for some \(\bar{v} \in (0, v_N) \), \(s_i = \min(v_i, \bar{v}) \).
Security Designs

Figure: Important Security Designs

![Graph showing security designs](image)
Classic Security Design Papers

- Definitions:
 - Effort: improving the mean asset value $E[v_i]$.
 - Risk shifting: changing the distribution of v_i without changing $E[v_i]$.

- Jensen and Meckling [1976]:
 - Debt good if only effort is possible.
 - Equity minimizes risk-shifting.

- Innes [1990]:
 - Only effort (no risk-shifting).
 - “Live-or-die” is optimal.
 - If restricted to monotone contracts, debt is optimal.

- This paper (and others): what is optimal when both effort and risk-shifting are possible? My answer: debt.
Why is Debt Optimal? Three Intuitions

1. Debt is “in between” the live-or-die security and equity.

2. Debt is the minimum variance security.
 - of all L.L. securities with the same E. V.
 - Reduced effort and risk-shifting costs summarized by security variance.

3. Constant payment, truncated for limited liability.
When is Debt Optimal?

- Static models, exact result depends on two assumptions:
 - The seller can choose any probability distribution ("non-parametric").
 - The cost of this choice is the Kullback-Leibler divergence.

- Static models, debt is approximately optimal:
 - Non-parametric models with invariant divergence cost functions.

- Dynamic models, exact result:
 - Continuous time model of effort, with quadratic costs.

- Dynamic models, approximate result:
 - Continuous time model of effort, convex costs.

- In the paper:
 - Static, parametric models.
 - Microfoundation based on rational inattention.
Static Security Design Papers

- **Static models of moral hazard:**
 - Seller can use multiple actions, not just effort (“parametric”).
 - Unifying theme: debt not optimal (with or w/o monotonicity).
 - Mehran et al. [2013], Biais and Casamatta [1999], Edmans and Liu [2011], Fender and Mitchell [2009], Hellwig [2009].

- **Security design with adverse selection:**
 - Dang et al. [2011], DeMarzo and Duffie [1999], DeMarzo [2005], Gorton and Pennacchi [1990], Nachman and Noe [1994], Yang [2013].
 - This paper and “buyer-side” adv. sel. complementary.
 - Seller-side adv. sel. mitigation: non-bank lenders, etc.

- **Empirical evidence consistent with moral hazard (mortgages):**
 - Ashcraft et al. [2014], Begley and Purnanandam [2014], Demiroglu and James [2012], Elul [2015], Jiang et al. [2013], Keys et al. [2010], Krainer and Laderman [2014], Nadauld and Sherlund [2013], Purnanandam [2011], Rajan et al. [2010].

- **Related theory:**
 - Holmström and Milgrom [1987], Carroll [2015], Vanasco [2013].
Timing and Bargaining

At time 0,
1. The seller designs security (“D”).
2. The seller makes a take-it-or-leave-it offer (“O”) at price K.
3. The buyer accepts or rejects.
4. If the buyer rejects, it is as-if $s_i = 0$ for all i, $K = 0$.
5. The seller creates/modifies the asset (“M”).

At time 1:
- The value of the asset is realized.
- The security pays out its cashflows.

Bargaining power irrelevant in “DOM” timing.
- Only the price changes.
Timing Doesn’t Matter

- Timing examples:
 - Royalties altered by Bowie’s actions after security sold: “DOM”.
 - For mortgages, create asset first, then sell security: “MDO”.
 - “Shelf registration” timing (DeMarzo and Duffie [1999]): “DMO”.

Theorem

If there is a unique sub-game perfect equilibrium with the “DOM” timing, the same price/security design/moral hazard actions are the strong proper equilibria of the “MDO” and “DMO” timings.

- Relies on “forward induction” intuition.
- The seller won’t offer a strictly dominated security.
- Some technical caveats.
Moral Hazard

- After security design, the seller creates or modifies the asset.
- The probability that state i occurs is p^i.
- The seller chooses some $p \in M$ (set of prob. dists.).
 - Assume non-parametric: M is entire probability simplex.
- Each p has a cost (next slide).
- Cannot contract on p.
- Identical to Holmström and Milgrom [1987].
- Flexibility related to Yang [2013].
Moral Hazard Cont’d

- The seller pays a cost $\theta D(p||q)$, where D is a divergence.
 - Definition of divergence: $D(p||q) > 0$ for all $p \neq q$, $D(q||q) = 0$.
 - θ is a positive constant, and q is the minimum-cost distribution.
 - Assume that q has full support: $\forall i, q^i > 0$.

- Almost without loss of generality.

- Additional assumptions:
 - Units: $\beta_s \sum_i \hat{p}^i v_i = 1$, where \hat{p} is “sell-nothing” distribution.
 - Largest possible value: $v_N > \sum_i q^i v_i + \beta_b^{-1} \kappa \theta$.
The Moral Hazard Sub-Problem

- Assume the security has been designed, and a price accepted.
- Define the seller’s retained tranche, $\eta_i = \beta_s (v_i - s_i)$.
- Define the cost function $\psi(p) = \theta D(p||q)$.
- The seller’s moral hazard problem and indirect utility function:

$$\phi(\eta) = \sup_{p \in M} \left\{ \sum_i p^i \eta_i - \psi(p) \right\}.$$

- This leads to optimal policy $p(\eta)$.
 - Non-parametric, always interior: $\phi(\eta)$ is convex conjugate of $\psi(p)$.
The Security Design Problem

- At the security design stage, the seller solves

\[U(\eta^*) = \max_{\eta} \left\{ \beta_b \sum_i p^i(\eta) s_i(\eta) + \phi(\eta) \right\}, \]

subject to the limited liability constraint that \(\eta_i \in [0, \beta_s v_i] \).

- Definition: \(s_i(\eta) = v_i - \beta_s^{-1} \eta_i \).
- \(p(\eta) \) and \(\phi(\eta) \) from the moral hazard problem.
The Kullback-Leibler Divergence

- The cost function is the Kullback-Leibler divergence (relative entropy):

\[D_{KL}(p \| q) = \sum_{i=0}^{N} p^i \ln\left(\frac{p^i}{q^i}\right). \]

- The KL divergence guarantees interior \(p \).
 - In MH problem, unique \(p \) for each \(\eta \), unique \(\eta \) for each \(p \).
 - Holmström and Milgrom [1987] first emphasized duality of \(\eta \) and \(p \).

- This divergence has many applications:
 - In Hansen and Sargent [2008] robustness theory.
 - In information theory and rational inattention (Sims [2003]).
 - Variety of uses in econometrics and statistics.

- Examples of \(p(\eta) \):
Security Design FOC

- The security design FOC is

\[\kappa (p^i(\eta^*) - \lambda^i + \omega^i) - \beta_b \sum_{j>0} \frac{\partial p^i(\eta)}{\partial \eta_j} |_{\eta=\eta^*} s_j(\eta^*) = 0. \]

- \(\lambda \) and \(\omega \) are limited liability multipliers (scaled by \(\kappa \) for convenience).
- Two important effects of changing \(s_i \):
 - Change in gains from trade, \(\kappa p^i(\eta^*) \).
 - Change in security value due to changing incentives.
- Key object: \(\frac{\partial p^i(\eta)}{\partial \eta_j} \).
Moral Hazard FOC

- Moral hazard FOC is

$$\eta_i = \frac{\partial \psi(p)}{\partial p^i} \bigg|_{p=p^*(\eta)}.$$

- Differentiate with respect to η_j:

$$\frac{\partial p^i(\eta)}{\partial \eta_j} = [\partial_i \partial_j \psi(p)]^{-1}.$$

- Holds for any convex cost function with interior solution for p.

Benjamin Hébert
Moral Hazard and the Optimality of Debt 20/47
The KL Divergence

- The Hessian of the KL divergence is the Fisher info. matrix, $g_{ij}(p)$:
 $$\partial_i \partial_j \psi(p) = \theta g_{ij}(p).$$

- $N = 2$ example (non-parametric):
 $$g_{ij}(p) = \begin{bmatrix} \frac{1}{p^1} & 0 \\ 0 & \frac{1}{p^2} \end{bmatrix} + \begin{bmatrix} \frac{1}{p^0} & \frac{1}{p^0} \\ \frac{1}{p^0} & \frac{1}{p^0} \end{bmatrix}.$$

- Inverse Fisher information metric ($N = 2$):
 $$[g_{ij}(p)]^{-1} = g^{ij}(p) = \begin{bmatrix} p^1 & 0 \\ 0 & p^2 \end{bmatrix} - \begin{bmatrix} p^1 \\ p^2 \end{bmatrix} \begin{bmatrix} p^1 & p^2 \end{bmatrix}.$$

- The Cramér-Rao bound is an equality: $V^p[s_i] = \sum_i \sum_j s_i s_j g^{ij}(p)$.
Debt is Optimal

- Security design FOC with KL divergence:

\[\kappa(p^i - \lambda^i + \omega^i) - \beta_b \theta^{-1} \sum_{j>0} g^{ij}(p^*) s_j(\eta^*) = 0. \]

- Equivalent problem:

\[\max_s \kappa E^{p^*} [s_i] - \frac{1}{2} \theta^{-1} \beta_b V^{p^*} [s_i] + \kappa \sum_i \lambda^i(v_i - s_i) + \kappa \sum_i \omega^i s_i. \]

- The FOC solves a mean-variance optimization.

Theorem

The optimal security design is a debt, \(s_j = \min(v_j, \bar{v}) \), for all \(\Omega \) and \(q \).
With the KL divergence cost function, we trade off mean and variance.

The higher mean-value of the security, the more the agents trade.

Higher variance of the security payoff has multiple effects:
- It can reduce the seller’s incentive to improve $E[v_i]$ ("effort").
- It creates incentives for the seller to shift cashflows.

Consider small change in the retained tranche, ε_i.
- ΔU from moral hazard costs (effort + risk-shifting): $-\text{Cov}^p(\varepsilon_i, \eta_i)$.
- ΔU from discounted asset value: $\beta_s \text{Cov}^p(\varepsilon_i, v_i)$.
- Combined effect: $\beta_s \text{Cov}^p(\varepsilon_i, s_i)$, change in security variance.

Key assumption: risk-shifting and effort are both costly.
Relaxing Assumptions

- Timing and bargaining assumptions not essential:
 - Results hold if the buyer had some bargaining power.
 - Results hold if the security designed after asset created.
- Buyer can be risk averse, any increasing, non-convex utility function.
- Don’t need $v_0 = 0$. Also don’t need $s_i \geq 0$ (buyer LL).
- Redundant states are “extra” information.
 - The “asset” is actually a pool of many assets.
 - The redundant states have information about each asset’s value.
 - Result: optimal security design depends only on total value.
Comparative Statics

- How risky is the optimal debt contract? Value of the “put option” is
 \[\beta_b \bar{v} - \beta_b E^{p^*}[s_i] = \kappa \theta. \]
- The smaller the moral hazard (bigger \(\theta \)), the riskier the debt.
- The bigger the gains from trade (bigger \(\kappa \)), the riskier the debt.
- The probability distributions \(q \) and \(p^* \) do not change the option value.
 - They do change the option-value/debt-level (\(\bar{v} \)) relationship.
- Empirical literature (Nadauld and Weisbach [2012]): \(\kappa \approx 0.85\% \).

Two possible calibration strategies:
1. Estimate \(\theta \) based on \(\hat{\rho} \) (sell-nothing) vs \(p^* \).
2. Infer \(\theta \) from the security design: \(\theta \approx 2 \).
Is Relative Entropy Special?

- Consider the class of (smooth) f-divergences:

\[
D_f(p\|q) = \sum_{i=0}^{N} q^i f\left(\frac{p^i}{q^i}\right)
\]

where \(f(u) \) is a smooth, convex function, \(f(1) = 0, f'(1) = 0, f''(1) = 1 \).

- Example (KL divergence):

\[
f(u) = u \ln u - u + 1
\]

- Others: \(\chi^2 \) divergence, Hellinger distance, reverse KL.

- I assume \(p(\eta) \) is interior for all \(\eta \).

Theorem

If the optimal security design is debt for all sample spaces \(\Omega \) and zero-cost probability distributions \(q \), then that \(f \)-divergence is the Kullback-Leibler divergence.
Approximately Optimal Debt Contracts

- Approximation: moral hazard θ^{-1} and gains from trade κ near 0.
 - Possible motivation: time period is short.
 - Legal or reputational constraints on moral hazard.
 - The limit is degenerate (no moral hazard or gains from trade).
 - Approximation results are for θ^{-1}, κ small but positive.
 - Key assumption: higher order terms negligible.

- “First-order terms dominate higher order terms” is not the same as “problem is economically small.”
Mean-Variance Tradeoffs

- Chentsov [1982]: For all f-divergences (invariant divergences),

\[
\frac{\partial_i \partial_j D(p\|q)}{p=q} = cg_{ij}(p)|_{p=q},
\]

for some constant \(c > 0\).

- All f-divergences look like KL divergence when \(p \approx q\).

Theorem

The difference in utilities achieved by an arbitrary security s and the sell-nothing security is

\[
U(s; \theta^{-1}, \kappa) - U(0; \theta^{-1}, \kappa) = \kappa E^q[\beta s_i] - \frac{1}{2} \theta^{-1} V^q[\beta s_i] + O(\theta^{-2} + \theta^{-1} \kappa).
\]
Debt is Approximately Optimal

- Define s_{debt} as the mean-variance optimal limited liability security:

$$s_{debt}(\theta^{-1}, \kappa) = \arg\max_s \kappa E^q[\beta_s s_i] - \frac{1}{2} \theta^{-1} V^q[\beta_s s_i]$$

over the set of LL securities.

Corollary

Let $s^*(\theta^{-1}, \kappa)$ be the optimal security given θ^{-1} and κ. Then

1. \(\lim_{\theta^{-1} \to 0^+} s^*(\theta^{-1}, \bar{\kappa}\theta^{-1}) = s_{debt}(1, \bar{\kappa}).\)
2. \(U(s^*(\theta^{-1}, \kappa); \theta^{-1}, \kappa) - U(s_{debt}(\theta^{-1}, \kappa); \theta^{-1}, \kappa) = O(\theta^{-2} + \theta^{-1} \kappa).\)

- Numerical example: [Example]
Second Order Approximations

Corollary

Chentsov [1982]: for all invariant divergences, \(\exists \alpha \in \mathbb{R} \) s.t.

\[
\partial_i \partial_j \partial_k D(p||q)|_{p=q} = \left(\frac{3 + \alpha}{2} \right) \partial_i g_{jk}(p)|_{p=q}.
\]

- KL: \(\alpha = -1 \). Hellinger, \(\chi^2 \), reverse KL: \(\alpha = 0, -3, 1 \).

Corollary

The second order-optimal security, for \(\alpha < 1 + \frac{2}{\kappa} \),

\[
s_i^{d-eq}(\theta^{-1}, \kappa) = \begin{cases}
 v_i & \text{if } v_i < \bar{v} \\
 \left(\frac{-\kappa(1+\alpha)}{2+\kappa(1-\alpha)}(v_i - \bar{v}) + \bar{v} \right)_+ & \text{if } v_i \geq \bar{v}
\end{cases}
\]

for some \(\bar{v} \in (0, v_N) \).
Second-Order Optimal Securities

- α controls which problem is most severe: effort or risk-shifting.
- The optimal contract goes from “Live-or-Die” (largest α) to equity (smallest α). Debt security is “in between.”
- There is a “pecking order.” First order: debt. Second order: debt and equity. Higher order: custom contract.

Figure: Second Order Security Designs ($\kappa = 17\%$)
Second-Order Optimal Securities

- For common α values (Hellinger, χ^2, reverse KL) and empirically relevant κ, second order optimal contracts close to debt.
- In example with $\alpha = -7$, debt achieves 99.96% of the gains of the optimal contract, vs. selling everything.
- How to estimate/calibrate α?

Figure: Second Order Security Designs ($\kappa = 0.85\%$)
Dynamic Models Outline

Outline:

1. CT model setup.
2. How CT and static models are related.
3. With quadratic effort costs, debt is optimal.
4. With convex efforts costs, debt is approx. optimal.

Most related literature:

- Chassang [2013], Cvitanić et al. [2009], DeMarzo and Sannikov [2006], Hartman-Glaser et al. [2012], Holmström and Milgrom [1987], Malamud et al. [2013], Sannikov [2013], Schaettler and Sung [1993].
Model Setup

- At time zero, seller and buyer trade security.
- Between times zero and one, seller applies effort.
- At time one, payoffs are received.
- \(V_t \) denotes the asset value at time \(t \).
- \(V \) denotes entire path of \(V_t \), for \(t \in [0, 1] \).
- The security design \(s(V) \) must be limited liability, \(s(V) \in [0, V_1] \).
- The security is \(\mathcal{F}_t^V \)-measurable (filtration generated by \(V_t \)).
- Key idea: \(V_1 \) is what matters. Path is “redundant state.”
The Asset Value Process

- V_t follows a controlled diffusion process:

$$dV_t = b(V_t, t)dt + u_t\sigma(V_t, t)dt + \sigma(V_t, t)dW_t.$$

- The initial value $V_0 > 0$ is known by buyer and seller at time zero.
- The functions $b(V_t, t)$ and $\sigma(V_t, t) > 0$ are given.
 - I assume restrictions for existence and integrability, discussed later.
- The drift u_t (“effort”) is controlled by the seller.
 - Effort always increases the expected time-1 asset value.
- W_t is a BM on the canonical filtered space, $(\Omega, \mathcal{F}, \{\mathcal{F}_t^W\}_{t=0}^1, \tilde{P})$.
- Moral hazard: W_t not observable/contractible.
Effort Strategies and Costs

- Flow cost of effort function, $g(t, V_t, u_t)$.
 - $g(\cdot)$ is continuously twice differentiable, convex in u_t, weakly positive.
 - $g(t, V_t, 0) = 0$ for all t and V_t.

- The admissible set of strategies \mathcal{U} is the set of \mathcal{F}_t^V-adapted, square-integrable feedback control strategies u_t such that

$$Z_t = \exp\left(\int_0^t u_s dB_s - \frac{1}{2} \int_0^t u_s^2 ds\right)$$

satisfies $E^{\tilde{P}}[Z_t^4] < \infty$ for all t.

- This implies Novikov’s condition holds (Cvitanić et al. [2009]).
Seller’s CT Problem

- Retained tranche $\eta(V) = \beta_s(V_1 - s(V))$, as before.
- The moral hazard sub-problem is

$$\phi_{CT}(\eta) = \sup_{\{u_t\} \in \mathcal{U}} \phi_{CT}(\eta; \{u_t\})$$

$$= \sup_{\{u_t\} \in \mathcal{U}} \left\{ E^{\tilde{P}}[\eta(V)] - E^{\tilde{P}} \left[\int_0^1 g(t, V_t, u_t) dt \right] \right\}.$$

- Let S be the set of limited-liability, \mathcal{F}_1^V-measurable security designs.
- The security design problem is

$$U_{CT}(s^*) = \sup_{s \in S} \left\{ \beta_b E^{\tilde{P}}[s(V)] + \phi_{CT}(\eta(V)) \right\}.$$
Weak vs. Strong Formulation

- “Weak” formulation: replace V with X, \tilde{P} with P.
 - Cvitanić et al. [2009], Schaettler and Sung [1993].
 - Equivalent for our purposes (security design).

- Consider a process

$$dX_t = b(X_t, t)dt + \sigma(X_t, t)dB_t,$$

where B is a Brownian motion on the probability space (Ω, \mathcal{F}, Q).

- For any $\{u_t\} \in \mathcal{U}$, $Z_t = \exp(\int_0^t u_s dB_s - \frac{1}{2} \int_0^t u_s^2 ds)$ is a martingale.

- By Girsanov’s theorem, define a measure P by $\frac{dP}{dQ} = Z_1$.

- Under measure P, X has the same law that V does under measure \tilde{P}.

- Key point: we defined measure Q and Brownian motion B_t.

Choosing a Distribution

- Each effort strategy $\{u_t\} \in \mathcal{U}$ defines a $\frac{dP}{dQ}$.
- The reverse is also true. Let M be the set of measures on (Ω, \mathcal{F}) s.t.
 - All $P \in M$ are absolutely continuous with respect to Q.
 - $E^Q[(\frac{dP}{dQ})^4] < \infty$.
- For each $P \in M$, there exists a unique (up to an evanescence) $\{u_t\} \in \mathcal{U}$ such that
 $$\frac{dP}{dQ} = \exp\left(\int_0^1 u_s dB_s - \frac{1}{2} \int_0^1 u_s^2 ds\right).$$
The Moral Hazard Problem Revisited

The moral hazard problem can be rewritten as

\[\phi_{CT}(\eta) = \sup_{P \in M} \left\{ E^Q \left[\frac{dP}{dQ} \eta(X) \right] - D_g(P||Q) \right\}, \]

where \(D_g(P||Q) \) is a divergence, defined as

\[D_g(P||Q) = E^P \left[\int_{0}^{1} g(t, X_t, u_t) dt \right], \]

where \(\{u_t\} \in \mathcal{U} \) is the control strategy that generates \(\frac{dP}{dQ} \).

Two questions:

1. Is there a \(g(\cdot) \) corresponding to the KL divergence?
2. Is there a \(g(\cdot) \) s.t. \(D_g(\cdot) \) has the Fisher “matrix” as its “Hessian?”
Quadratic Costs

- Consider flow cost function \(g(t, X_t, u_t) = \frac{\theta}{2} u_t^2 \).
- Define \(D_{KL}(P||Q) = E^Q\left[\frac{dP}{dQ} \ln(\frac{dP}{dQ})\right] \).
 - Bierkens and Kappen [2014] show \(\theta D_{KL}(P||Q) = D_g(P||Q) = E_0^Q\left[\frac{\theta}{2} \int_0^1(u_t)^2 dt\right] \).
 - Integrability condition: \(E^Q[\exp(4\theta^{-1}X_1)] < \infty \).

Theorem

In the continuous time model with quadratic costs, for all functions \(b(V_t, t) \) and \(\sigma(V_t, t) \) such that the integrability conditions are satisfied and a solution to the SDE exists, the optimal security design is a debt contract:

\[
s_j(\eta^*) = \min(v_j, \bar{v}).
\]
Discussion

- Surprising equivalence of static and dynamic contracting problems.
- In the dynamic effort problem, seller can “choose a distribution.”
- The cost is the KL divergence, and the mean-variance intuition applies.
- Key distinction: final outcomes V_1 vs. paths V.
 - Recall: in static problem, Ω could contain redundant values.
 - Same idea: inefficient to pay seller different when $V_1(\omega) = V_1(\omega')$.
- Comparison with Holmström and Milgrom [1987]:
 - In HM, process is arithmetic BM, “constant” contract optimal.
 - In this model, because of limited liability, debt is optimal.
- $E^Q[\cdot]$ could also be expectations under common risk-neutral measure.
- Extension: payment at time $T > 1$.

Extension
Writedowns (Renegotiation)

- Seller has sold optimal debt security to the buyer.
- Suppose that at time $t = 0.5$, seller can offer buyer a new security.
 - but cannot offer payments. LL binds.
 - Assume no gains from trade at time 0.5.
- If $v_{0.5}$ is very low, seller has weak incentives for effort.
- Can seller and buyer find a Pareto-improving writedown? Yes, if:

\[\beta_b E_0^P[s] > \theta \iff \frac{\bar{v} - E_0^P[s]}{E_0^P[s]} < \kappa. \]

- If moral hazard is large enough relative to security value.
Now consider convex cost functions $g(t, V_t, u_t) = \theta \psi(u_t)$.

- For technical reasons, require $|u_t| \leq \bar{u}$.
- $\psi(\cdot)$ convex, continuously twice differentiable, minimized at $u_t = 0$.
- For all $|u_t| \leq \bar{u}$, $\psi''(u) \in [K_1, K_2]$ for $0 < K_1 < 1 < K_2$.

Integrability: for all feasible $\left\{u_t\right\}$, $E^P[X_1^4] < \infty$.

Consider first-order approximation in κ and θ^{-1} (same as earlier).

Goal: show that debt is first-order optimal.
Connection to Fisher “Matrix” (Heuristic)

Let \(\frac{dP}{dQ}(\gamma, \tau) = \exp(\int_0^1 (\gamma u_s + \tau v_s) dB_s - \frac{1}{2} \int_0^1 (\gamma u_s + \tau v_s)^2 ds) \).

- \(\gamma, \tau \) are parameters. \(u_s \) and \(v_s \) are “directions” (Cameron-Martin).
Connection to Fisher “Matrix” (Heuristic)

- Let \(\frac{dP}{dQ}(\gamma, \tau) = \exp(\int_0^1 (\gamma u_s + \tau v_s) dB_s - \frac{1}{2} \int_0^1 (\gamma u_s + \tau v_s)^2 ds) \).
 - \(\gamma, \tau \) are parameters. \(u_s \) and \(v_s \) are “directions” (Cameron-Martin).

- Fisher information in directions \(u, v \):
 \[
 I(u, v) = E^P(\gamma, \tau)[(\frac{\partial}{\partial \gamma} \ln(dP/dQ(\gamma, \tau)))(\frac{\partial}{\partial \tau} \ln(dP/dQ(\gamma, \tau)))]|_{\gamma=\tau=0}
 = E^Q[\int_0^1 u_s v_s ds].
 \]
Connection to Fisher “Matrix” (Heuristic)

- Let \(\frac{dP}{dQ}(\gamma, \tau) = \exp\left(\int_0^1 (\gamma u_s + \tau v_s) dB_s - \frac{1}{2} \int_0^1 (\gamma u_s + \tau v_s)^2 ds\right) \).
 - \(\gamma, \tau \) are parameters. \(u_s \) and \(v_s \) are “directions” (Cameron-Martin).

- Fisher information in directions \(u, v \):
 \[
 I(u, v) = E^{P(\gamma, \tau)}\left[\left(\frac{\partial}{\partial \gamma} \ln\left(\frac{dP}{dQ}(\gamma, \tau)\right)\right)\left(\frac{\partial}{\partial \tau} \ln\left(\frac{dP}{dQ}(\gamma, \tau)\right)\right)\right]|_{\gamma=\tau=0}
 = E^{Q}\left[\int_0^1 u_s v_s ds\right].
 \]

- Second variation (“Hessian”) of \(D_\psi(P \| Q) \):
 \[
 \frac{\partial}{\partial \tau} \frac{\partial}{\partial \gamma} D_\psi(P(\gamma, \tau) \| Q)|_{\gamma=\tau=0} = \theta \frac{\partial}{\partial \tau} \frac{\partial}{\partial \gamma} E^{P(\gamma, \tau)}\left[\int_0^1 \psi(\gamma u_s + \tau v_s) ds\right]|_{\gamma=\tau=0} = \theta E^{Q}\left[\int_0^1 u_s v_s ds\right].
 \]
Mean-Variance

Theorem

In the continuous time problem, with convex flow cost function $\psi(\cdot)$, for all functions $b(V_t, t)$ and $\sigma(V_t, t)$ such that the integrability conditions are satisfied and a solution to the SDE exists, the difference in utilities achieved by an arbitrary security s and the sell-nothing security is

\[
U(s; \theta^{-1}, \kappa) - U(0; \theta^{-1}, \kappa) = \kappa E^Q[\beta_s s] - \frac{1}{2} \theta^{-1} V^Q[\beta_s s] + O(\theta^{-2} + \theta^{-1} \kappa).
\]

- Debt securities are first-order optimal.
- Open question: is this related to invariant divergences?
Conclusions

- Debt optimally balances concerns about effort and risk-shifting.
 - This results goes against the intuition from previous papers.
- The exact result applies with KL divergence cost functions.
 - These can be motivated with rational inattention (see paper).
 - The KL divergence can be justified from a continuous time problem.
- The result holds approximately in many static and dynamic models.
- The paper use new techniques to explain the prevalence of debt.
Using definition of Fisher information metric, rewrite FOC:

$$\beta_b s_j = \beta_b \sum_k p^k s_k + \kappa \theta - \kappa \left(\frac{\lambda^j - \omega^j}{p^j} \right)$$

Define an endogenous constant, $\bar{v} = \sum_k p^k s_k + \frac{\kappa}{\beta_b} \theta$.

$\omega^j > 0$ never possible.

If $\lambda^j = 0$, so $s_j \leq v_j$, then $s_j = \bar{v}$.

If $\lambda^j > 0$, then $s_j = v_j$, and by the formula above, $v_j < \bar{v}$.

Therefore, $s_j = \min(v_j, \bar{v})$, which is debt (can show that $\bar{v} \in (0, v_N)$).
Generality of Divergences

- Example: seller chooses log-mean (effort) e of log-normal distribution.
 - Convex cost $c(e - e_q)$, minimized at $c(0) = 0$.

- In this framework:
 - Set M is set of log-normal distributions with log-variance σ^2.
 - Assume $p \in M$, calculate e: $e = \int_{\Omega} p(v) \ln(v) dv$.
 - $\theta D(p||q) = c(\int_{\Omega} \ln(v)[p(v) - q(v)] dv)$.

Back
Moral Hazard Solutions

Figure: Optimal $p(\eta)$
Calibration from Moral Hazard

Assuming KL divergence cost function:

\[
\theta^{-1} \approx E^{\hat{p}}[v_i] \cdot \frac{E^{\hat{p}}[v_i] - E^{p^*}[v_i]}{Cov^{p^*}(v_i, s_i^*)}
\]

- Empirical work estimates ex-post differences.
 - Ex-post effect size vs. ex-ante effect size.
 - Elul [2015], Keys et al. [2010], Krainer and Laderman [2014], Purnanandam [2011]
- Hard to estimate \(Cov^{p^*}(v_i, s_i^*)\).
 - How much risk did sellers think they retained?
 - Evidence of some risk retention in Demiroglu and James [2012], Gorton [2009].
Rearrange optimal security design equation:

\[
\frac{\beta_b \bar{v}}{\beta_b E^p [s_i]} - \frac{\beta_b E^p [s_i]}{E^p [v_i]} \left(1 - \frac{E^\hat{p} [v_i]}{E^p [v_i]} \right) \kappa^{-1} = \theta
\]

- **Spread**: the initial yield on securitized assets, above discount rate.
 - Initial spread on 06-2 ABX (90/10 weights on AAA and BBB): 34bps
- **Share**: the fraction of the asset value that is sold to investors. \(\approx 1 \).
- **Moral Hazard**: percentage diff. between ex-ante securitized/non-securitized asset value.
 - Nearly 1 (consistent w/ empirical evidence).
- **Nadauld and Weisbach [2012]** estimate \(\kappa \approx 17 \text{bps} \)
- **Estimate** \(\theta \) of roughly 2.
Example Asymptotic Utility

Figure: Utility vs. Sell-Everything

![Utility vs. Sell-Everything](image1)

Figure: Percentage of Possible Gains

![Percentage of Possible Gains](image2)
By Girsanov’s theorem, $B^P_t = B_t - \int_0^t u_s ds$ is a BM under measure P.

$$D_{KL}(P\|Q) = E^P[\ln(\frac{dP}{dQ})]$$

$$= E^P\left[\int_0^t u(X, s) dB_s - \frac{1}{2} \int_0^t u(X, s)^2 ds\right]$$

$$= E^P\left[\int_0^t u(X, s) dB^P_s + \frac{1}{2} \int_0^t u(X, s)^2 ds\right]$$

$$= \frac{1}{2} E^P\left[\int_0^t u(X, s)^2 ds\right].$$
Extension

- Originator controls V_t for $t \in [0, 1]$, but security pays at time $T > 1$.
- Suppose that $\frac{dP}{dQ}$ is \mathcal{F}_1-measurable. Then

$$E_0^P[\ln(\frac{dP}{dQ})] = E_0^P[\ln(E_1^P[\frac{dP}{dQ}])]$$

- The KL divergence evaluated at time 1 and T will be the same.
- Seller controls $\frac{dP}{dQ}$, subject to measurability constraint.
- Just like a parametric problem (see paper).

